1. Özcan F, Özişler Z. The relationship between urinary symptom severity and functional status in patients with stroke. Scott Med J 2022;369330211072247.
2. Musco S, Giraudo D, Antoniono E, Lombardi G, Del Popolo G, Li Marzi V, et al. Prevalence of nocturia after brain injury: a cross-sectional study in a single rehabilitation center. Brain Inj 2021;35:90-5. PMID:
33315508
3. Zhao W, Chellppa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv 2003;35:399-458.
4. Agrawal B, Gupta C, Mandloi M, Dwivedi D, Surana J. GPU based face recognition system for authentication. Int J Eng Dev Res 2017;5:931-5.
5. Xiang C, Tang C, Cai Y, Xu Q. Privacy-preserving face recognition with outsourced computation. Soft Comput 2016;20:3735-44.
6. Introna L, Wood D. Picturing algorithmic surveillance: the politics of facial recognition systems. Surveill Soc 2004;2:177-98.
7. Pagano C, Granger E, Sabourin R, Marcialis GL, Roli F. Adaptive ensembles for face recognition in changing video surveillance environments. Information Sciences 2014;286:75-101.
8. Kim ES, Bang G, Chung D, Ko IJ. Environment independent hybrid face recognition system using a fixed camera and a PTZ Camera. Adv Sci Technol Lett 2016;129:196-202.
9. Shen Y, Hu W, Yang M, Wei B, Lucey S, Chou TC. Face recognition on smartphones via optimised sparse representation classification. IEEE 2014;237-48.
10. Gupta A. StrokeSave: a novel, high-performance mobile application for stroke diagnosis using deep learning and computer vision [preprint]. 2019 [cited 2021 Dec 5]. arXiv:1907.05358. Available from:
https://arxiv.org/abs/1907.05358.
11. Foong OM, Hong KW, Yong SP. Droopy mouth detection model in stroke warning. IEEE 2016;616-21.
12. Chang CY, Cheng MJ, Matthew HM. Application of machine learning for facial stroke detection. IEEE 2018;1-5.
14. Haykin S. Neural networks: a comprehensive foundation. New York: MacMillan; 1994.
19. Murphy KP. Dynamic bayesian networks: representation, inference and learning thesis. Berkeley (CA): University of California, Berkeley; 2002.
20. Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998;6:175-82. PMID:
9783223
21. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. PMID:
26017442
22. Gemma S, Raul E, Sanchez Y, Carlos H, Garcia C. Facial paralysis detection on images using key point analysis. Appl Sci 2021;11:2435.
23. Park E, Han T, Nam HS. mFAST: automatic stoke evaluation system for time-critical treatment with multimodal feature collection and machine learning classification. Proceedings of the 2020 12th International Conference on Computer and Automation Engineering. 2020 May 16 (online); 2020. 38-41.