2. Sakhaee K, Maalouf NM, Sinnott B. Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 2012;97:1847-60. PMID:
22466339
4. Parvivar F, Low RK, Stoller ML. The influence of diet on urinary stone disease. J Urol 1996;155:432-40. PMID:
8558629
5. Dauw CA, Alruwaily AF, Bierlein MJ, Asplin JR, Ghani KR, Wolf JS Jr, et al. Provider variation in the quality of metabolic stone management. J Urol 2015;193:885-90. PMID:
25286012
7. LeCun Y, Bose B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput 1989;1:541-51.
8. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai XH, Unterthiner T, et al. An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR 2021; 2021 May 3-7, 2021.
9. Ma FZ, Sun T, Liu LY, Jing HY. Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network. Future Gener Comput Syst 2020;111:17-26.
14. Oh KJ. Risk factors for urinary stone. J Korean Med Assoc 2020;63:660-7.
16. Ayesha AS, Ghous BN, Mashal T, Adnan H. Investigation of histogram equalization filter for CT scan image enhancement. Biomedical Engineering 2019;31:1950038.
17. Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 2016;38:295-307. PMID:
26761735
18. Zhu JY, Park TS, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-9; Venice, Italy. 2017. p. 2242-51. doi: 10.1109/ICCV.2017.244.