1. Özcan F, Özişler Z. The relationship between urinary symptom severity and functional status in patients with stroke. Scott Med J 2022;67:64-70.
2. Musco S, Giraudo D, Antoniono E, Lombardi G, Del Popolo G, Li Marzi V, et al. Prevalence of nocturia after brain injury: a cross-sectional study in a single rehabilitation center. Brain Inj 2021;35:90-5.
3. Kim JY, Kang K, Kang J, Koo J, Kim DH, Kim BJ, et al. Executive summary of stroke statistics in Korea 2018: a report from the epidemiology research council of the Korean Stroke Society. J Stroke 2019;21:42-59.
4. Kim YS, Park SS, Bae HJ, Cho AH, Cho YJ, Han MK, et al. Stroke awareness decreases prehospital delay after acute ischemic stroke in Korea. BMC Neurol 2011;11:2.
5. Hong KS, Bang OY, Kim JS, Heo JH, Yu KH, Bae HJ, et al. Stroke statistics in Korea: part II stroke awareness and acute stroke care, a report from the korean stroke society and clinical research center for stroke. J Stroke 2013;15:67-77.
6. Park TH, Ko Y, Lee SJ, Lee KB, Lee J, Han MK, et al. Identifying target risk factors using population attributable risks of ischemic stroke by age and sex. J Stroke 2015;17:302-11.
7. Kim JW, Lee KJ, Yang HR, Chang JY, Moon JS, Khang YH, et al. Prevalence and risk factors of elevated alanine aminotransferase among Korean adolescents: 2001-2014. BMC Public Health 2018;18:617.
8. Chae J, Seo MY, Kim SH, Park MJ. Trends and risk factors of metabolic syndrome among Korean adolescents, 2007 to 2018. Diabetes Metab J 2021;45:880-9.
9. Hong KS, Bang OY, Kang DW, Yu KH, Bae HJ, Lee JS, et al. Stroke statistics in Korea: part I. Epidemiology and risk factors: a report from the korean stroke society and clinical research center for stroke. J Stroke 2013;15:2-20.
10. Kamal N, Sheng S, Xian Y, Matsouaka R, Hill MD, Bhatt DL, et al. Delays in door-to-needle times and their impact on treatment time and outcomes in get with the guidelines-stroke. Stroke 2017;48:946-54.
11. Gaidhani BR, Rajamenakshi RR, Sonavane S, Brain stroke detection using convolutional neural network and deep learning models. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT); Jaipur, India; 2019 Sep. 28–29. doi: 10.1109/ICCT46177.2019.8969052.
12. Kim ES, Heo JM, Eun SJ, Lee JY. Development of early-stage stroke diagnosis system for the elderly neurogenic bladder prevention. Int Neurourol J 2022;26(Suppl 1):S76-82.
13. Chin CL, Lin BJ, Wu GR, Weng TC, Yang CS, Su RC, et al. An automated early ischemic stroke detection system using CNN deep learning algorithm. In: 2017 IEEE 8th International conference on awareness science and technology (iCAST); Taichung, Taiwan; 2017 Nov. 8-10. 2017;368-72.
14. Elbagoury BM, Vladareanu L, Vlădăreanu V, Salem AB, Travediu AM, Roushdy MI. A hybrid stacked CNN and residual feedback GMDH-LSTM deep learning model for stroke prediction applied on mobile AI smart hospital platform. Sensors (Basel) 2023;23:3500.
15. Chavva IR, Crawford AL, Mazurek MH, Yuen MM, Prabhat AM, Payabvash S, et al. Deep learning applications for acute stroke management. Ann Neurol 2022;92:574-87.
16. Fang G, Huang Z, Wang Z. Predicting ischemic stroke outcome using deep learning approaches. Front Genet 2022;12:827522.
17. Bijalwan V, Semwal VB, Singh G, Mandal TK. HDL-PSR: modelling spatio-temporal features using hybrid deep learning approach for post-stroke rehabilitation. Neural Process Lett 2023;55:279-98.
18. Wang H, Wu Z, Ma S, Lu S, Zhang H, Ding G, et al. Deep learning for signal demodulation in physical layer wireless communications: prototype platform, open dataset, and analytics. IEEE Access 2019;7:30792-801.
19. Wang Y, Liu M, Yang J, Gui G. Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Trans Veh Technol 2019;68:4074-7.
20. Chen W, Lei X, Chakrabortty R, Chandra Pal S, Sahana M, Janizadeh S. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for headcut gully erosion susceptibility. J Environ Manage 2021;284:112015.
21. Subramaniyam M, Lee KS, Park SJ, Min SN. Development of mobile application program for stroke prediction using machine learning with voice onset time data. In: Stephanidis C, Antona M, editors. HCI International 2020 - Posters. HCII 2020. Communications in Computer and Information Science, vol 1224. Cham: Springer; 2020:1224:670-5.
https://doi.org/10.1007/978-3-030-50726-8_87.