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Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or with-
out urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, ag-
ing, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory 
responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myo-
genic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic con-
traction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine 
(ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through 
afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce 
smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have 
a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals 
in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhi-
bition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it 
seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced 
detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may 
have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via 
urothelial β3-AR.
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INTRODUCTION

Overactive bladder (OAB) is a very common urological disease 
worldwide, and the prevalence rate is estimated to be approxi-
mately 11.8%–16.6% [1-3]. OAB is a symptom-based syndrome 
defined by urgency, frequency and nocturia with or without 
urge incontinence [4]. It may be overlooked since it is not a life-
threatening disease like cancer; however, as symptoms worsen, 
it may greatly affect daily life and reduce the quality of life. It 
may cause depression and anxiety, and it has been reported that 
nocturia in elderly OAB patients is closely associated with frac-
tures, sleep disorders, and an increased prevalence of cardiovas-
cular disease [5, 6].

Because OAB is a symptom-based syndrome, the causes are 
multifactorial. Therefore, there also be various phenotypes. De-
trusor overactivity (DO), often confused with OAB, is strictly a 
urodynamic finding characterized by involuntary detrusor con-
tractions during the filling phase, which may be spontaneous  
or provoked [4]. While the majority of men with DO in urody-
namic findings represented urgency (90%), not all patients with 
urgency have DO (69% in men vs. 44% in women) [7]. Many 
studies to reveal pathological mechanisms are conducted using 
animal experiments. Because it is impossible to objectively mea-
sure the urgency symptom in noncommunicative animals, most 
OAB animal models are based on those with DO [8], in which 
involuntary detrusor contraction can be measured on the cys-
tometrogram (CMG). Therefore, unfortunately, experimental 
models cannot represent all clinical pathologies perfectly. Nev-
ertheless, over past few decades, we have been able to detect the 
pathophysiological mechanisms underlying OAB, which had 
previously been regarded as idiopathic.

There has also been a lot of progress in the therapeutic fields 
of OAB. In addition to antimuscarinics, β3-adrenergic receptor 
(β3-AR) agonists and botulinum toxin A have expanded the 
treatment options. Invasive procedures such as sacral neuro-
modulation and peripheral tibial nerve stimulation have also 
become a part of OAB treatments. Particularly, β3-AR agonists 
play an inhibitory role in the afferent signaling pathway of the 
bladder and have the advantage of minimal or no decrease in 
detrusor contractility compared to antimuscarinics. Recently, it 
has been suggested that continuous treatment with these drugs 
may inhibit neural remodeling in the central nervous system 
(CNS) in an OAB animal model [9]. In this article, we reviewed 
the OAB pathophysiology, the pharmacological treatment op-
tions commonly used in clinical practice, and its mechanisms 

of action. Additionally, the action mechanisms of β3-AR were 
reviewed under various pathologic conditions.

PATHOPHYSIOLOGY OF OAB

OAB pathophysiology has mostly been approached from 3 ma-
jor perspectives. Neurogenic theory can be explained by degen-
erative changes or damages in the nerve pathway involved in 
the micturition reflex [10]. Another perspective, the myogenic 
hypothesis, is that the changes in the muscle cells of the bladder 
may lead to bladder overactivity [11]. More recently, the uro-
thelial role in the changes of bladder afferent signaling pathway, 
which result in OAB, has been proposed [12]. Other research-
ers have also focused on continuous stimulation transmitted 
from the bladder to the CNS, regardless of whether the source 
is nerve, muscle, or urothelium. These stimuli, which fire spon-
taneously like a pacemaker, are also referred to as micromotion, 
spontaneous contraction, or afferent noises and are attracting 
attention as one of the causes of bladder overactivity [13, 14].

Neurogenic Hypothesis
Neurogenic factors have 2 main causes. One is that the inhibi-
tory system, which controls the micturition reflex, is damaged 
and does not work properly, and the other is that the micturi-
tion reflex is enhanced [10]. Reduced suprapontine inhibition 
due to brain injury [15, 16], damaged inhibitory axonal trans-
mission from the CNS due to spinal cord injury (SCI) [10], and 
loss of peripheral inhibition are included in the damaged inhib-
itory system of the micturition reflex. Causes of enhancement 
of the micturition reflex include abnormally increased afferent 
activities from the bladder [14, 17, 18] and increased excitatory 
neurotransmission from the CNS by neural remodeling [10] 
(Fig. 1).

Diseases, which affect the CNS such as stroke, Parkinson dis-
ease, multiple sclerosis, and SCI, are often accompanied by 
OAB symptoms [17]. The cerebral cortex acts as a tonic inhibi-
tion system, which suppresses parasympathetic excitatory out-
flow from the bladder during the storage phase. If this region is 
damaged, suprapontine inhibition is reduced, resulting in DO 
[19]. Glutamatergic excitatory transmission is known to be as-
sociated with bladder overactivity. In rats with decreased blad-
der capacity due to cerebral infarction, administration of N-
methyl-D-aspartate glutamatergic antagonist counteracted this 
effect [20]. In a Parkinson disease animal model using N-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin which can 



S14    www.einj.org

Kwon, et al.  •  Pathophysiology of OAB and β3-AgonistsINJ

Int Neurourol J February 29, 2024

destroy dopamine neurons, the D-1 dopaminergic receptors 
inhibited bladder overactivity and D-2 dopaminergic receptors 
were found to facilitate micturition [21, 22]. Urgency induced 
by large bladder volume without DO showed an exaggeration 
of cortical responses, for which the anterior cingulate gyrus is 
found to be the central region. However, in cases accompanied 
with DO, prefrontal deactivation was a distinct finding [23, 24]. 
The thalamus also seems to modulate the lower urinary tract 
function, and thalamic deep brain stimulation induced the urge 
to urinate earlier and decreased bladder capacity [25]. Recent 
brain imaging studies have also shown that bladder control is 
associated with an extensive network of brain regions. Thus, it 
is thought that dysfunction in various areas of the CNS may 
cause different phenotypes of OAB [23].

In periphery, bladder afferents are located in the suburotheli-
al layer and interact and participate in signal transmission 
through numerous excitatory and inhibitory transmitters re-
leased from the urothelium. Dysregulation of bladder afferent 
activity results in changes in micturition signals in the efferent 
pathway, resulting in detrusor dysfunction [26]. Although the 
purinergic component involved in nerve-mediated contraction 
was not identified in the normal bladder specimens, approxi-
mately 50% of the purinergic component was identified in OAB 
specimens [27]. Abnormally activated purinergic transmission 
may be related to OAB symptoms. Some researchers have also 
paid attention to increased afferent activity mechanisms. Oxy-

butynin, an antimuscarinic agent, appears to inhibit the afferent 
part of the micturition reflex by not only relaxing the detrusor 
muscle but also affecting the bladder’s sensory nerve function 
[28]. In rats, CL316,243, a β3-AR agonist, inhibited Aδ-fibers 
but not mechanosensitive C-fibers. However, CL316,243 could 
also suppress PGE2-induced C-fiber hyperactivity [29].

The detrusor-to-detrusor reflex is mediated through 2 pe-
ripheral afferents (Aδ- and C-fiber afferents) [30, 31]. The C-fi-
ber afferent-evoked reflex in spinal intact (SI) animals does not 
respond to bladder distention and, under normal conditions, 
the reflex through the C-fiber is weak and only partially respon-
sible [32]. Electrophysiological studies have shown that the con-
duction delay of animals with SCI in the micturition reflex is 
relatively shorter than that of SI animals [31, 33, 34], indicating 
that the afferent limb of the micturition reflex is composed of 
unmyelinated C-fibers after SCI [30]. Capsaicin, a neurotoxin 
known to desensitize C-fiber afferents [35], failed to block the 
Aδ-fiber-evoked bladder reflex in SI animals, but could block 
the C-fiber-evoked bladder reflex in SCI animals [30, 31]. Addi-
tionally, in SCI patients with DO and autonomic dysreflexia, in-
travesical administration of capsaicin induces increased bladder 
capacity and decreased contraction pressure, autonomic dysre-
flexia, and urge urinary incontinence (UUI) [36, 37]. These re-
sults indicate that axonal damage to the spinal cord reorganizes 
the micturition reflex pathway, resulting in hyperexcitability of 
the C-fiber afferents [10, 26]. SCI also changed the muscarinic 

Fig. 1. Pathophysiology of neurogenic etiologies in overactive bladder. CNS, central nervous system.
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presynaptic modulatory mechanism in the cholinergic terminal 
of the bladder [38]. These changes enhance parasympathetic 
signaling and seem to be related to DO.

Myogenic Hypothesis
Predisposing factors such as partial denervation and bladder 
ischemia may alter the properties of the detrusor smooth mus-
cle [39-41], and DO may result from the histologic changes in 
the detrusor [42], which may result in spontaneous, autono-
mous cellular activity mediated by extracellular Ca2+ influx and 
intracellular Ca2+ release [43]. It has been reported that this local 
contraction and micromotion, which begin at some parts of the 
bladder, spread throughout the bladder wall, resulting in coor-
dinated myogenic contraction [39, 44, 45]. Coordinated myo-
genic contraction and increased intravesical pressure can then 
generate urgency by transferring afferent signals to the CNS.

Urothelial Hypothesis
In the past, the urothelium was thought to be a simple barrier 
that isolate the bladder from the urine. However, more recently, it 
has been discovered that the urothelium is an important sensory 
organ that senses and communicates thermal, mechanical, and 
chemical stimuli beyond the passive barrier and plays an impor-
tant immunological role in the pathogenesis of diseases such as 
OAB or interstitial cystitis/bladder pain syndrome (IC/BPS) [46]. 
Spontaneous detrusor contraction modulated by bladder mucosa 
showed low amplitude and high frequency activities in SI rats, 
but became high amplitude and lower frequency in SCI rats. Par-
tial removal of the mucosa reduced the amplitude of spontaneous 
contraction and the response to bladder stimulation with stretch 
or chemical stimuli. In tissues where mucosa was removed, en-
hanced spontaneous activity was eliminated. Under manipulated 
conditions of suppressed smooth muscle signals, spontaneous 
contraction in the pathologic bladder was driven by mucosa. 
These results suggest the possibility that spontaneous contraction 
originated from the urothelium [47].

Urothelial cells can be targets of transmitters secreted by 
nerves or other types of cells. It may also be activated through 
autocrine or paracrine mechanisms. Urothelium and suburo-
thelium contain afferent nerves and receptors. During the stor-
age phase, compounds produced and secreted here activate or 
inhibit the afferent pathway. Excitatory and inhibitory neu-
rotransmitters such as acetylcholine (ACh), adenosine triphos-
phate (ATP), and nitric oxide (NO) secreted from the urotheli-
um are involved in this mechanism [46].

Since much evidence suggested that the abnormal sensory 
function seen in OAB may be due to increased activity of blad-
der afferents, urothelial and suburothelial dysfunction has re-
ceived attention. Alterations in the function of the urothelial re-
ceptor, the release of neurotransmitters, the sensitivity of inter-
stitial cells in the suburothelial layer, and their coupling may in-
duce involuntary bladder contractions [48, 49]. Thus, spontane-
ous contractions from mucosa have been suggested as a possi-
ble cause of urgency.

The receptors of nerve growth factor (NGF) are abundantly 
expressed in the urothelium. NGF is increased in the bladder 
and urine of patients with bladder outlet obstruction (BOO), 
diabetic cystopathy, neurogenic DO, IC/BPS, and other types of 
storage lower urinary tract dysfunction (LUTD) [48, 49]. Tran-
sient receptor protein cation channel subfamily V member 1 
(TRPV1) is a nociceptor known to transmit and modulate pain 
in response to temperature, acidity, capsaicin, etc. NGF stimu-
lates the proliferation and survival of target neurons [50], and 
bladder NGF also lowers the threshold of TRPV1 [51]. Exces-
sive NGF expression is involved in OAB pathogenesis by influ-
encing bladder dysfunction through these mechanisms [52]. 
Some studies have found that unidentified inhibitory substanc-
es other than NO, cyclooxygenase, catecholamine, adenosine, 
and GABA (γ-Aminobutyric acid) are released from the uro-
thelium upon stimulation of muscarinic receptors [53, 54]. Ad-
ditional future research is necessary to elucidate the relationship 
between various urothelially released these substances and the 
etiology of OAB.

Autonomous Activities (Afferent Noises)
Pre- and postganglionic ACh from the parasympathetic nerve 
may be leaked from the parasympathetic nerves by bladder 
stretching, even during the normal storage phase. This leakage 
of ACh is increased in DO. In this process, the sensitivity of de-
trusor muscle cells to neurotransmitters increases, resulting in 
local contractions (micromotion) of the detrusor bundle. Al-
though this local contraction is not coordinated and cannot in-
crease intravesical pressure in all cases, it may generate an affer-
ent signal, which triggers the micturition through the pontine 
micturition center, may eventually coordinate bladder contrac-
tions [13].

Previous studies have reported that bladder smooth muscle 
autonomous activity, nonmicturition contractions, and phasic 
sensory discharge are all features found during normal bladder 
filling. The afferent discharge (afferent noises) associated with 
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this response may be induced by stretch, noxious stimuli, and 
chemicals released from the urothelium or mediated by the 
motor or sensory system [55]. In addition, several other sys-
tems appear to be involved in afferent noises. When the afferent 
information from the bladder is vast, the CNS is overflowing 
with such afferent noises from many other sources. However, it 
is unclear how and when the CNS selects the afferent noses 
necessary to trigger the micturition reflex or perceive sensation 
although the findings appear to be somewhat different from 
normal micturition mechanisms [55].

Afferent information transmits useful information to the 
CNS during micturition and storage. When afferent noises 
reach a certain intensity, the body seems to interpret them as 
various stages of bladder filling, including urgency or pain. Only 
some part of the afferent noise is used to create sensation, and 
the others probably contribute to bladder filling, sphincter con-
trol, and coordination of micturition reflexes [55]. Hyperexcit-
ability of the nervous system, CNS and peripheral nervous sys-
tem due to pathological conditions and defects in inhibitory 
mechanisms seem to alter autonomous bladder activity, result-
ing in DO [14, 56]. The findings of increased rhythmic activity 
in the bladder in the BOO rat model [57] and increased micro-
motion of the bladder in women with chronic pelvic pain [58] 
are supporting evidence. It is similar to the myogenic hypothesis 
that these autonomous activities occur within the bladder wall 
component, and there are some overlaps with the neurogenic 
hypothesis, in which the CNS can influence them.

PATHOLOGICAL CONDITIONS UNDERLYING 
OAB

BOO and Bladder Ischemia
DO is highly prevalent (approximately 52%–60%) in patients 
with BOO due to BPH [59]. In a study for preoperative patients, 
the prevalence rate of OAB without or with BOO was reported 
to be 25% or 62%, respectively, showing that BOO is closely re-
lated to the occurrence of OAB [60, 61]. Chronic BOO causes 
pathophysiological alterations in all layers of the bladder wall, 
including detrusor hypertrophy, fibrosis, urothelial dysfunction, 
and functional denervation [62, 63]. In a BOO model using ro-
dents, partial BOO resulted in bladder dysfunction accompa-
nied by bladder hypertrophy and fibrosis [64]. Bladder disten-
tion due to inadequate emptying may induce bladder ischemia, 
and repeated reperfusion increases the release of free radicals 
and cytokines and causes inflammation, resulting in reperfu-

sion damage in tissues [65]. In terms of ischemia, hypoxia-in-
ducible factor (HIF) and proinflammatory cytokines, including 
interleukin-1β (IL-1β) and transforming growth factor-β (TGF- 
β), increase [66]. In a recent study, an increase in the expression 
of toll-like receptor 4 (TLR-4) and TLR-9, which are related to 
inflammation induction, was reported in the urothelium of the 
BOO animal model. Antagonists of these receptors inhibited 
BOO-induced inflammatory responses [65]. In the urothelium 
of the BOO bladder, nucleotide-binding oligomerization do-
main-like receptors family pyrin domain containing 3 (NLRP3) 
inflammasome was also activated, which promotes fibrosis and 
detrusor denervation [67]. Inhibitors of NLRP3 prevented these 
alterations and preserved bladder function in partial BOO mice 
[68]. Bladder overactivity caused by BOO also appears to be as-
sociated with changes in NGF, potassium channel subfamily K 
member 2 (KCNK2, also known as TREK-1), other potassium 
channels, muscarinic- and purinergic receptors. In the BOO 
model using rats, NGF was involved in the interaction between 
target organs and nerves, resulting in neuroplasticity [69]. TRPV1 
was expressed not only in the afferent nerve of the bladder but 
also in urothelial cells [70]. Changes in the expression of NGF 
and TRPV1 in the bladder seem to affect sensory signaling and 
result in neuroplasticity in the CNS. This neural remodeling, 
central sensitization, may be a factor in OAB symptoms persist-
ing even after BOO is resolved [9, 71, 72]. TREK-1 is part of a 
subfamily of mechano-gated potassium channels and stabilizes 
the membrane potential of detrusor myocytes during bladder 
filling. This action relaxes the bladder wall to maintain low pres-
sure while the bladder is filled with urine [73]. In the BOO mice 
model, protein expression and immunoreactivity of the TREK-
1 channel were significantly reduced in detrusor smooth mus-
cle. L-methioninol, a TREK-1 channel blocker, significantly in-
creased premature contraction during the filing phase in sham-
operated mice although it did not significantly affect BOO mice 
with DO. These results show that a decrease in the TREK-1 
channel is associated with the OAB-like condition in the BOO 
mouse model [74]. Activation of certain types of potassium 
channels stabilizes membrane potentials and reduces the excit-
ability of nerves and muscle cells. Several studies have suggested 
the relevance of potassium channels in OAB [75-78]. For exam-
ple, in the rat bladder at 6 weeks after BOO, the expression of 
the β1-subunit of large conductance calcium-activated potassi-
um (BK) channels and small conductance calcium-activated 
potassium channel 3 (SK3 channel) were significantly increased, 
whereas the BK channel β4-subunit expression was decreased 



www.einj.org    S17

 Kwon, et al.  •  Pathophysiology of OAB and β3-Agonists INJ

Int Neurourol J February 29, 2024

as the severity of BOO worsens. These results indicate that, in 
the early stages of BOO, BK and SK channels may increase to 
suppress bladder contraction as a compensatory mechanism for 
BOO-induced OAB; however, during OAB progression, this 
compensatory mechanism seems to fail to work [79]. Also, the 
immunoreactivity of M2-, M3-, and P2X3 receptors was simul-
taneously increased in the urothelium of BOO rats [80]. Musca-
rinic receptors are expressed in the urothelium as well as the de-
trusor muscle and are involved in the OAB pathogenesis [81, 
82]. Purinergic P2X3 receptors located at the suburothelial sen-
sory afferents are activated by ATP released by urothelial stretch-
ing, and intravesical instillation of ATP could induce bladder 
overactivity in rats [83, 84]. Thus, ATP and P2X3 also seem to be 
involved in urothelial signaling and OAB pathophysiology.

In addition, BOO and arterial occlusive disease are well-
known etiologies of bladder ischemia and have been commonly 
used as a bladder ischemia animal model. In BOO patients, an 
increase in outlet resistance during voiding may cause compen-
satory bladder hypertrophy, resulting in a perfusion deficit of 
tissue [85]. The average bladder wall thickness, particularly in 
trigone, was closely related to urgency in OAB women [86].

A study of the ischemic rat model using iliac artery injury 
showed DO at 8 weeks from the injury. However, detrusor un-
deractivity was found at 16 weeks from the injury, indicating 
that DO can emerge by compensatory mechanisms in the early 
period of bladder ischemia. Accordingly, the expression of the 
M3 muscarinic receptor was increased at 8 weeks from injury 
but decreased at 16 weeks. Also, the histological findings showed 
degeneration of both muscles and nerves over time [87]. Isch-
emic stress in the bladder can be detected by cellular stress sen-
sors such as 5’ adenosine monophosphate-activated protein ki-
nase, apoptosis signal-regulating kinase 1, and caspase-3 [88]. In 
bladder ischemia-induced DO animal models, factors such as 
HIF, TGF-β, vascular endothelial growth factor, and NGF were 
increased, which may play an important role in the OAB patho-
physiology related to ischemia [89].

Obesity and Metabolic Syndrome
Metabolic syndrome has a prevalence of approximately 23% in 
adults and consists of risk factors such as cardiovascular disease, 
diabetes, insulin resistance, central obesity, dyslipidemia, and 
hypertension. There was no gender difference in the prevalence 
of OAB among men and women with metabolic syndrome [90-
93]. In men with metabolic syndrome, incidences such as noc-
turia, incomplete emptying, weak urinary flow, and hesitancy 

were increased [94]. Also, the impact of diabetes mellitus (DM) 
on lower urinary tract symptoms (LUTS) is multifactorial. DM 
may cause dysfunction of the detrusor smooth muscle, urothe-
lium, and nerves [95]. In a study of 1,359 DM patients, 22.5% 
had OAB, and in those over 60 years of age, the distribution was 
slightly greater in men than in women (24.8% vs. 20.1%). Re-
garding BPH, cases with DM tended to have larger prostates 
than those without DM [96, 97]. Diuresis and metabolic effects 
due to DM resulted in detrusor hypertrophy and changes in 
mechanical properties, which decreased bladder voiding effi-
ciency. In the early stages of DM neuropathy, bladder overactiv-
ity was observed. In streptozotocin-induced DM rats, M2- and 
M3 receptor expression increased in the urothelium and blad-
der muscle at 2 weeks [98, 99]. In another study, an underactiv-
ity was shown at 12 weeks after DM induction, accompanied by 
increased urine NGF, EP1, and EP3 (E-series prostaglandin re-
ceptors), but by decreased bladder NGF and urine PGE2 [100]. 
In an animal model of metabolic syndrome with long-term 
fructose feeding, upregulation of M2- and M3 receptors were 
implicated in DO, and metabolic perturbations due to fructose 
intake resulted in increased proinflammatory cytokines in de-
trusor muscles, increased oxidative stress, mitochondrial dys-
function, and increased apoptosis. Additionally, detrusor hy-
pertrophy seemed to contribute to DO [101, 102]. Detrusor hy-
pertrophy observed in metabolic syndrome or diabetic animal 
models was accompanied by decreased functional bladder ca-
pacity and increased urinary frequency. Hypertrophy typically 
presents with reduced compliance, high intravesical pressure, 
and DO, which may lead to reperfusion injury [103]. Further-
more, mitochondria can provide high energy consumption in 
the early stages of bladder hypertrophy, but long-term and ex-
cessive energy consumption depletes and deforms mitochon-
dria, resulting in mitochondrial damage [104, 105].

Hyperlipidemia may be associated with OAB women, ac-
cording to some clinical studies [106]. Experimental studies us-
ing rats demonstrated that a decrease in detrusor contractility 
in the hypertension and hyperlipidemia model was related to a 
decrease in Rho kinase and protein kinase activity [107]. A 
study using chronic hyperlipidemic rabbits reported reduced 
bladder capacity, DO, and nerve degeneration as a result [108]. 
In a bladder ischemia model using iliac artery injury, vascular 
injury accompanied by high-fat diet-induced hypercholesterol-
emia produced more severe ischemia than in vascular injury 
alone, and the mechanisms of this pathologic progress may be 
closely related to the occurrence of OAB [109]. Obesity, either 
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alone or in combination with DM, was strongly associated with 
the development of OAB and LUTS, including SUI in women 
[110]. Hypertension, hyperinsulinemia, and obesity are also as-
sociated with autonomic hyperactivity, which can cause bladder 
dysfunction and LUTS [111]. Based on various research results, 
as the mechanism of OAB caused by metabolic syndrome, it is 
assumed that increased metabolic loads stimulate bladder sen-
sory afferents, and various other factors such as oxidative stress, 
systemic inflammation, and insulin resistance promote chronic 
pelvic ischemia and urothelial dysfunction.

Psychological Stress and Affective Disorder
OAB patients are vulnerable to depression and anxiety because 
of their bothersome symptoms. Conversely, psychological stress 
and affective disorders may be the risk factors for developing or 
worsening OAB [112, 113]. There were alterations in the mictu-
rition pathway of CNS and local changes in bladder function 
during the investigation using an animal model of stress-in-
duced bladder dysfunction. These local changes in the bladder 
included detrusor hypertrophy, increased bladder contractile 
response, and afferent hypersensitivity [114-116]. The bidirec-
tional relationship between affective disorder/psychological 
stress and OAB may exist. Corticotrophin-releasing factor 
(CRF), which is commonly involved in mechanisms of both 
pathologies, provides with supporting evidence for this rela-
tionship [117].

The limbic-hypothalamic-pituitary-adrenal axis is important 
in behavioral, physiological, and molecular responses to stress 
conditions [118-120]. In particular, the paraventricular nucleus 
(PVN) of the hypothalamus produces and releases CRF and proj-
ects it to other sites in the body [118, 121, 122]. CRF is known to 
mediate stress and visceral hyperalgesia, etc. [112, 123, 124]. Dif-
ferent brain regions, such as the prefrontal cortex, amygdala, and 
hippocampus, as well as PVN, may be involved in stress respons-
es [122]. Recently, it has been reported that stress-induced mole-
cules such as bombesin, angiotensin II, nicotinic ACh receptor, 
NO, and hydrogen sulfide (H2S) stimulate various cerebral re-
gions and affect the micturition circuit [125].

Receptors for CRF were located throughout the central mic-
turition pathway and in the periphery of the urothelium, where 
they increase ATP release and contribute to the enhancement 
of pelvic sensory hypersensitivity [126]. Additionally, catechol-
amine from the adrenal medulla can trigger the release of cyto-
kines throughout the nervous system [116]. CRF receptors are 
also located on inflammatory cells involved in innate immunity. 

Thus, stress-induced OAB may also be accompanied by an in-
flammatory response. An increase in CRF due to stress causes 
the release of cytokines from activated immune cells through 
CRF and releases cytokines through catecholamine. Therefore, 
it seems that activation of this pathway by stress may result in 
an inflammatory response in the CNS and the bladder and af-
fect the lower urinary tract function through cytokine release. 
A study targeting volunteers reported that stress increases the 
proinflammatory cytokines IL-1β, IL-6, IL-10, and tumor ne-
crosis factor-α in plasma [127]. Animal experiments using a 
CRF receptor 1 antagonist showed that depression-induced 
OAB was improved as serum CRF decreased. A decreased se-
rotonin in the CNS also resulted in urinary frequency and DO 
[128] whereas frequency and urgency were improved in OAB 
patients treated with duloxetine, a norepinephrine serotonin 
reuptake inhibitor [129].

Central sensitization is a condition in which nociceptive neu-
rons in the CNS respond excessively to stimulation with a 
threshold level below normal through the afferent pathway. It 
has also been suggested as another pathophysiologic cofactor of 
OAB and affective disorder [130]. Transient receptor potential 
(TRP) channels play an important role in the central sensitiza-
tion process, and the dysfunction of TRP channels is consid-
ered important in the comorbidities of affective disorders and 
OAB [72, 130, 131].

Urinary Microbiome
Until recently, urine was considered sterile, and bacterial growth 
was abnormal as found in urinary tract infection (UTI). Addi-
tionally, the criteria for diagnosing OAB include the absence of 
infection. However, with the advancement of bacterial culture 
technology, what we knew was no longer true. Although the 
mechanism and causal relationship are still unclear, it seems 
likely that the microorganisms detected in urine are not abnor-
mal findings anymore, and the microbiome may be involved in 
the mechanism of OAB development [132]. In one study, in 
which antibiotics were administered to OAB patients who test-
ed negative for the conventional culture technique, symptoms 
improved in half of the patients [133]. In addition, using a new 
culture technology, approximately 39% of refractory OAB pa-
tients who had not been able to diagnose UTIs with existing 
culture technology had bacterial infections [134]. In UUI pa-
tients, bacterial DNA and higher bacterial load were found 
more frequently, and the diversity of the urinary microbiome 
was reduced [135-137]. Strains such as Lactobacillus crispatus 
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found in healthy female bladders represented lower bacterial 
loads in patients with UUI [135, 136]. Lactobacillus seems to in-
hibit the growth of virulent bacteria in the same environment 
where they grow due to its acid-producing properties. Although 
intravaginal administration of Lactobacillus significantly re-
duced recurrent UTI, there is still a lack of evidence regarding 
the role of Lactobacillus in OAB [135]. Some studies have re-
ported that the urine microbiome had a significant impact on 
OAB treatment results, and in particular, baseline characteris-
tics with fewer bacteria and communities with less diversity re-
sponded better to the treatment.

In addition, recent studies have also shown that abnormal uri-
nary microbiomes with less diversity were associated with high-
er levels of depression and anxiety [137], suggesting that the uri-
nary microbiome can communicate with the brain. In other 
words, the brain-bladder axis driven by the microbiome may 
exist like the brain-gut axis, in which the gut microbiome can af-
fect CNS directly through the systemic pathway across the 
blood-brain barrier (BBB) using metabolites such as short-chain 
fatty acids and may affect neuroglial interactions [138, 139]. This 
continuous interference creates neural remodeling in the CNS, 
and through bidirectional interference, it can also affect periph-
eral organs. If the brain-bladder-microbiome axis exists, it is as-
sumed that bladder function will be affected along with CNS 
changes by the same mechanism. Like the mechanisms of psy-
chological stress mentioned above, a top-down pathway from 
the brain may also cause LUTS. Local and systemic immune re-
sponses, including inflammation, can also affect the CNS direct-
ly and indirectly [140, 141]. Thus, there is the possibility of mul-
tidirectional communication between the bladder, CNS, and 
nervous and circulatory systems, which could help understand 
the mechanism of OAB and establish treatment strategies.

Inflammation
Inflammation is not a common feature of OAB. However, Tyagi 
et al. [142] reported that several markers related to inflamma-
tion were increased in the urine of OAB patients. In another 
study, bladder biopsies of patients with neurogenic DO showed 
severe and inflammatory infiltration in 24% and 74%, respec-
tively [143]. A previous study also reported that pyuria was pres-
ent in one-third of OAB patients, and a strong correlation be-
tween OAB severity and immune response was suggested by an-
other report [144]. It has also been suggested that a relationship 
between inflammation and OAB, in which proinflammatory cy-
tokines such as pyuria and IL-6 were significantly more evident 

in OAB patients than controls [145]. Although, based on these 
results alone, it is not easy to conclude whether OAB patients are 
susceptible to inflammation or whether inflammation is a pre-
ceding cause of OAB, several experimental studies suggest the 
hypothesis that inflammation may be one of the causes of OAB. 
For example, as previously mentioned, bladder ischemia may 
induce an inflammatory response, which produces neural re-
modeling of bladder afferent pathways. The metabolism of mu-
cosa was 3 times higher than that of smooth muscle, and perfu-
sion changes were greater in mucosa than in muscle [146, 147]. 
In addition, inflammatory cell infiltration was mainly observed 
in the suburothelial layer [143]. Based on these findings, muco-
sal membranes appear to be structurally vulnerable to ischemic 
damages. Moreover, as urothelial afferent nerves exist in the mu-
cosa, several mediators within the mucosa affect detrusor con-
traction and afferent nerve activity. Alterations in the urothelial 
afferent signaling pathway due to inflammation are thought to 
be one of the causes of inducing DO [148]. Cytokines and oxi-
dative stress from inflammation can affect C-fiber afferents and 
cause direct sensitization [149]. Histamine released from mast 
cells can also cause afferent sensitization [150]. Cytokines and 
oxidative stress during the inflammation also trigger bladder fi-
brosis and smooth muscle proliferation. Therefore, inflamma-
tion could be a cause of OAB and may contribute to bladder hy-
pertrophy in OAB.

In addition, localized immune reactions affect LUTS by sen-
sitizing nociceptors in peripheral afferents and lead to altera-
tions in the CNS. Another route may induce neuro-immune in-
teractions in the CNS using the hypothalamus-pituitary-adrenal 
axis or the vagal nerve pathway by cytokine released from im-
mune cells, similar to the systemic immune response. The im-
mune system and the CNS may have a bidirectional effect, and 
LUTD appears to be involved in this process [140, 141]. NGF 
exerts its action as a peripheral mediator in several inflammato-
ry pain disorders. It is synthesized in the bladder and transmits 
signals to the CNS through the afferent nerve [151]. In an ex-
perimental study, intravesical instillation of exogenous NGF 
stimulated afferent firing and produced bladder overactivity, 
and this process could be blocked by anti-NGF treatments 
[152]. Stretching of the urothelium seems to generate NGF in 
the bladder. Increased NGF may play an important role in in-
ducing urgency in OAB [153].

Finally, it has been reported that prostatic inflammation is an 
important factor of LUTS in patients with BPH and that the de-
gree of prostatic inflammation in BPH specimens is associated 
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with the severity of LUTS [154, 155]. Accordingly, animal mod-
els of prostatic inflammation induced by chemical irritation in 
rats or prostatic epithelium-specific deletion of E-cadherin in 
mice showed that prostatic inflammation-induced bladder 
overactivity due to prostate-to-bladder pelvic organ cross-sen-
sitization through afferent hyperexcitability, which is mediated 
at least in part by NGF upregulation in the bladder [156-159]. 
Thus, local inflammation in the prostate seems to be an impor-
tant factor inducing male LUTS in BPH patients.

PHARMACOLOGICAL THERAPIES IN OAB AND 
MECHANISMS OF ACTION

Antimuscarinics
ACh is secreted from the neuromuscular junction of parasym-
pathetic nerves and acts on muscarinic receptors to control the 
human bladder. Muscarinic receptors are found in the urotheli-
um, interstitial cells, afferent nerves, and detrusor muscles. There 
are M1–M5 receptor subtypes in the human bladder, and M2 
receptors are the most abundant in detrusor muscles, but M3 re-

ceptors are predominantly involved in detrusor contraction. Ac-
tivation of M2 and M3 mediates contraction of detrusor smooth 
muscle [160-162].

Antimuscarinics are used to treat OAB/DO, inhibiting con-
traction mediated by M2 and M3 receptors by competitively 
blocking postjunctional antimuscarinic receptors. This mecha-
nism is appropriate to explain the effect of antimuscarinics on 
urge incontinence. However, considering that most clinically 
used doses of antimuscarinics have little or no effect on voiding 
bladder contractions and act during the storage phase, it is rea-
sonable to assume that it acts primarily through the afferent 
pathway of the bladder [13, 163]. The mechanisms of antimus-
carinics working on the afferent pathway may be explained in 
the following 3 mechanisms [18]; (1) antimuscarinics may block 
urothelial ACh generated by mechanical or chemical stimuli in 
the process of stimulating the afferent nerve indirectly and di-
rectly via ATP, (2) ACh from nonneuronal sources can potenti-
ate the afferent noises caused by spontaneous myogenic con-
tractions generated during bladder filling, and antimuscarinics 
seems to inhibit this process and (3) under neurogenic DO con-

Fig. 2. Pathophysiology of autonomous activities (afferent noises) in overactive bladder and antimuscarinic actions on acetylcholine 
(ACh) effects. (A) Bladder distension (mechanical) or chemical stimulation of the bladder results in urothelial ACh release, which stim-
ulates afferent nerves directly or indirectly via adenosine triphosphate (ATP) release. (B) During bladder filling, spontaneous myogenic 
contractions, which can be enhanced by non-neuronal ACh release, may happen. Antimuscarinics can block ACh effects. (C) Neuronal 
and nonneuronal ACh release can increase spontaneous myogenic contractions, which enhance afferent activity. Antimuscarinics can 
block these enhanced ACh activities. Reprinted from Andersson KE. Eur Urol 2011;59:377-386 [18], with permission of Elsevier. 
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ditions such as nerve injury, spontaneous myogenic contraction 
may be enhanced by ACh, which is released by neuronal sourc-
es as well as nonneuronal sources, and antimuscarinics may 
suppress the increased afferent activity (Fig. 2).

Given that the concentration of the administered antimusca-
rinic agent exceeds the therapeutic window, the antimuscarin-
ics may partially attenuate the concentration of released ACh 
for muscle contraction during the voiding phase, thereby re-
ducing detrusor contraction [18]. These effects may increase 
residual urine volume or lead to urinary retention. However, at 
appropriate doses, the combined use of α-blockers and anti-
muscarinics in male patients with a moderately enlarged pros-
tate (up to 75 g) is safe, even in patients with a post-micturition 
residual urine volume of up to 150 mL [164].

In idiopathic DO, the evidence is insufficient to draw a cer-
tain conclusion about changes in the expression of M2- and M3 
muscarinic receptors and changes in functions such as receptor 
sensitivity [18]. In neurogenic DO, there was a report of de-
creased numbers of muscarinic receptors and increased recep-
tor sensitivity although the results of a clinical study concluding 
that a higher concentration of medication was needed for opti-
mal effects in patients with neurogenic DO seem to contradict 
this finding. However, considering the treatment goal of neuro-
genic DO is to reduce the intravesical pressure to prevent upper 
urinary tract damage, it seems inappropriate to compare the 
concentrations of the OAB treatment regimen under non-
equivalent conditions [165, 166].

Reduced detrusor responses by intramural nerve stimulation 
and postjunctional supersensitivity to ACh have been demon-
strated in the BOO experiment using pigs and patients with 
BOO and DO. In the partial BOO model using rats, the musca-
rinic receptor-coupled RhoA/Rho-kinase pathway was activated 
as a mechanism to compensate for bladder emptying [167, 168]. 
M3 receptors predominantly mediate detrusor contractions in 
BOO-induced hypertrophied rat bladder, and another study 
also reported that M2 density increased while M3 density de-
creased [169, 170]. However, the relevance of these findings as-
sociated with OAB pathophysiology has not yet been elucidated.

Finally, muscarinic receptors are abundant in the CNS and 
involved in memory and cognitive functions. Most antimusca-
rinic drugs in clinical use can pass through the BBB whereas 
solifenacin, trospium, and darifenacin have been shown to have 
little or no risk for cognitive decline compared to oxybutynin in 
healthy older adults with OAB. However, the role of β3-AR ag-
onists in OAB treatment has been highlighted as various stud-

ies have revealed the risk of exacerbations in cognitive function 
in elderly patients with Alzheimer’s disease due to anticholiner-
gic accumulation [171].

Phosphodiesterase Inhibitors
In the lower urinary tract, NO is involved in several key func-
tions. In the bladder, NO is synthesized in the urothelium, de-
trusor muscle, and nerves and can regulate detrusor smooth 
muscle tone, bladder compliance, and micturition reflex. In the 
urethra and the prostate, NO is generated by non-cholinergic 
parasympathetic nerves, vascular endothelial cells, and smooth 
muscle cells and is implicated in the control of urethral tone, 
continence mechanisms, and regulation of the secretory func-
tion of the prostatic gland. NO diffused into the peripheral tissue 
activates guanylyl cyclase, which catalyzes guanosine triphos-
phate into cyclic guanosine monophosphate (cGMP), and the 
increased cGMP activates protein kinase G, leading to smooth 
muscle relaxation [172]. In this process, phosphodiesterase in-
hibitors (PDE5i) inhibit the degradation of cGMP and promote 
the downstream signaling process from NO. There has been 
some evidence that PDE5i improve urinary tract symptoms in 
men with erectile dysfunction and LUTS [173-175]. In the BOO 
model using rats, bladder muscle relaxation was facilitated by in-
creased NO signaling [176]. Adenylyl cyclase is an enzyme that 
catalyzes the metabolism of ATP to cyclic adenosine monophos-
phate (cAMP), and increased cAMP relaxes the detrusor muscle 
strip of pigs [177]. PDE4 inhibitors suppress cAMP metabolism, 
thereby preventing the activity of myosin light-chain kinase via 
an increase in protein kinase A to induce smooth muscle relax-
ation [178]. In the studies using BOO rat model, selective PDE4 
inhibitors effectively suppressed DO without effects on bladder 
contractility [179, 180]. However, as a clinical regimen, PDE4 
inhibitors have the problems of most implicated gastrointestinal 
side effects such as nausea and vomiting.

Botulinum Neurotoxin A
Botulinum Neurotoxin A (BoNT-A) has been used to treat a 
variety of LUTD conditions since it was first used in 1988 to 
treat detrusor sphincter dyssynergia in men with SCI. It shows 
successful results not only in the treatment of neurogenic DO 
caused by SCI, but also in patients with idiopathic OAB and DO.

BoNT-A inhibits the release of ACh and other neurotrans-
mitters from efferent nerve terminals including pre- and post-
ganglionic parasympathetic nerve terminals [181]. In the blad-
der, it inhibits the release of ACh from the efferent nerve, re-
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ducing detrusor contractility during micturition, inhibiting ve-
sicular noradrenaline release, preventing α- and β3-AR activa-
tion, and additionally affecting bladder neck contracture and 
detrusor relaxation [182]. BoNT-A may also act through the af-
ferent nerve pathway. In an investigation of the patients with 
neurogenic DO injected by BoNT-A into the bladder, a signifi-
cant decrease in M2-, M3 muscarinic receptors as well as P2X2- 

and P2X3 purinergic receptors in the muscle layer was observed 
[183]. Considering that the bladder of P2X3-null mice showed 
significantly decreased sensitivity to bladder filling, ATP and its 
receptor, P2X3, may contribute to the pathogenesis of OAB by 
playing an important role in the modulation of the urinary 
bladder volume reflex [184]. A biopsy conducted after BoNT-A 
injection into the bladder of neurogenic and idiopathic DO pa-
tients demonstrated decreased expression of P2X3 and TRPV1 
immunoreactivity in afferent nerve fibers. Additionally, the de-
gree of decrease in P2X3 and TRPV1 was correlated with im-
provement in frequency and urgency [185]. ATP and neuro-
trophins released from the urothelium were suppressed, and 
NO secretion was increased after BoNT-A treatment. Based on 
these results, BoNT-A seems to inhibit the release of ATP and 
neurotransmitters related to afferent sensitization in the afferent 
nerve and urothelium [182].

β3-AR AGONIST ACTION ON OAB AND ITS 
SITE OF ACTION IN VARIOUS PATHOLOGIC 
CONDITIONS

β-ARs have 3 subtypes (β1, β2, and β3) in both the detrusor 
muscle and the urothelium [186]. In an immunohistochemistry 
study, β3-ARs were found not only in the detrusor smooth 
muscle in rat and human bladder but also in the urothelium 
[187], interstitial cells in the suburothelial layer, afferent nerve 
[187, 188], and recently in L6-S1 dorsal root ganglion (DRG) 
neurons [182]. Immunoreactivity of β3-ARs was also found in 
small-diameter neurons in the major pelvic ganglion of rats 
[189]. These results suggest that β3-ARs are involved in a neu-
ral circuit that controls afferent outflow and sensation. An acti-
vation of β3-ARs catalyzes the conversion of ATP to cAMP 
through adenylyl cyclase activation, which decreases intracellu-
lar Ca2+ concentration and results in the relaxation of detrusor 
smooth muscle [162]. In addition to the cAMP-dependent 
pathway, potassium channels may also be involved in β3-AR 
agonist-induced detrusor relaxation [190].

Activation through β3-AR agonists increased bladder capaci-

ty without changing voiding pressure and residual urine vol-
ume during the voiding phase [191-193]. Also, under isovolu-
metric conditions, the frequency of rhythmic bladder contrac-
tion was reduced without suppressing contraction amplitude 
[194]. These results suggest that the mechanisms of β3-AR ago-
nists may be involved in bladder relaxation during the storage 
phase without affecting the voiding phase [195, 196].

β3-AR agonists inhibited spontaneous myogenic contractions 
and non-voiding contractions, which enhance afferent activities 
[197]. Bladder distention initiated a low threshold mechanore-
ceptive Aδ-afferents, and mirabegron, a β3-AR agonist, report-
edly inhibited mechanosensitive (Aδ) afferents activity, possibly 
associated with inhibiting bladder microcontractions. In anoth-
er study, CL316,243, a β3-AR agonist, inhibited filling-induced 
activity, which may involve Aδ- and C-fiber afferents, but pre-
dominantly Aδ-fibers [198]. The β3-AR agonist is also involved 
in inhibiting autonomous bladder contraction, but is thought to 
have little effect on coordinated voiding contraction induced by 
ACh or ATP. These results could explain why the β3-AR agonist 
has little effect on bladder emptying [199]. Tolterodine, an anti-
muscarinic, reduced the amplitude and frequency of nonvoid-
ing contractions (NVCs), whereas mirabegron mainly affected 
frequency and tolterodine reduced voiding contraction in a 
dose-dependent manner. β3-ARs at parasympathetic terminals 
directly inhibited the cholinergic pathway related to excitatory 
motor drive [200]. β3-AR agonists also inhibited cholinergic 
transmission by adenosine-induced retrograde activation of 
prejunctional A1 receptor, where equilibration nucleoside trans-
porters 1 (ENT1) was involved in adenosine release from detru-
sor smooth muscle. In addition, β3-AR agonists exerted a fine 
control of the sensory bladder drive, which occurred during the 
storage phase by adenosine released from urothelium via ENT1. 
Thus, β3-AR agonists, which may inhibit endogenous adenos-
ine-mediated cholinergic neurotransmission, increase bladder 
capacity during the storage phase and increase micturition in-
terval without affecting micturition pressure or residual urine 
volume [201].

Bladder Outlet Obstruction
The expressions of the β3-ARs subtype in the human detrusor 
muscle were not different regardless of BOO [202]. In the BOO 
model, mirabegron decreased the frequency of NVCs as well as 
spontaneous contractile activities [203]. Previous studies have 
found spontaneous contractile activity in the mucosa of guinea 
pigs and pig bladders, and one possible source of this activity is 
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suburothelial interstitial cells [204-206]. These spontaneous 
contractile activities from interstitial cells partially contributed 
to enhanced bladder afferent interactions [197]. Therefore, one 
of the possible mechanisms of β3-AR agonist action may be the 
inhibition of spontaneous contractile activities through β3-ARs 
of interstitial cells in the bladder. Mirabegron inhibits afferent 
activities, specifically Aδ-fiber afferents, enhanced by myogenic 
microcontraction in both normal and BOO bladders in rats. 
This mirabegron-mediated inhibition is considered to occur in 
β3-AR located in afferent nerves [198]. A recent study showed 
that vibegron could partially inhibit mechanosensitive afferent 
transduction through Aδ- and C-fibers by reducing myogenic 
contractile activities in the BOO-induced hypertrophied blad-
der in rats [207].

Bladder Ischemia
In a bladder ischemia model using rats, the relaxation response 
of the isolated detrusor strip to isoprenaline, a non-selective 
β-AR agonist, and salbutamol, a β2-AR agonist, did not change, 
whereas the relaxation response to BRL 37,344, a selective β3-
AR agonist, was increased [208]. In another study for chronic 
bladder ischemia, long-term treatment with mirabegron pre-
vented bladder hypertrophy and fibrosis. These results suggest 
that β3-ARs may be a potential therapeutic target in chronic 
ischemia-related bladder dysfunction [209].

Neurogenic LUTD
In normal bladder, β3-AR agonist exerts its action by inhibiting 
ACh release in parasympathetic nerves and suppressing the af-
ferent nerve pathway from the urothelium to the afferent nerves 
[210]. Aδ-fiber afferents mainly control normal micturition. 
However, after SCI, micturition depends on DO, resulting from 
increased excitability of capsaicin-sensitive C-fiber afferents 
[211], where neurotrophic factors such as NGF and BDNF 
(brain-derived neurotrophic factor) are involved [212]. In SCI 
mice, pretreatment with capsaicin suppressed NVC during fill-
ing but did not affect decreased bladder capacity, compliance, 
high voiding pressure, and poor voiding efficiency. These re-
sults show that DO and micturition reflex are triggered by dif-
ferent afferent mechanisms [213]. When vibegron was admin-
istered to SCI mice, NVCs were suppressed, and the interval 
until NVCs occurred was prolonged, but there was no change 
in other cystometric parameters. These results indicate that 
vibegron, a β3-AR agonist, inhibits capsaicin-sensitive C-fiber 
afferents in SCI mice [214]. In contrast, mirabegron adminis-

tered to SI rats suppressed mechanosensitive afferent activity 
related to rhythmic bladder contraction, in which the inhibition 
of Aδ-fiber afferents acted predominantly rather than C-fiber 
afferents [29].

Overactive Bladder
Mirabegron reduced carbachol-induced detrusor muscle tone 
equally in 3 experimental groups of normal patients, patients 
with BOO only, and patients with BOO-induced DO in a con-
centration-dependent manner [215]. In addition, β3-AR ago-
nists suppressed detrusor contraction induced by endogenous 
ACh by 67%, but did not suppress detrusor contraction induced 
by exogenous ACh administration (only 25% reduction). These 
results indicate may suggest that the β3-AR is present in ACh-
containing nerves, especially parasympathetic nerves, and is in-
volved in detrusor relaxation mediated by prejunctional mecha-
nisms. [188, 200, 216]. Considering that the β3-AR agonists did 
not decrease the micturition pressure during the voiding phase, 
the β3-AR-induced therapeutic mechanism may be explained 
by the suppression of the pathologically increased cholinergic 
tone during the filling phase in OAB.

When vibegron, a new β3-AR agonist, was administered to 
the OAB rat model, increased expression of urothelial β3-AR, 
increased bladder capacity, and decreased threshold pressure 
were confirmed without affecting contractile function. Based 
on these results, vibegron may work through 2 pathways; (1) a 
mechanism that inhibits ACh release from the cholinergic ef-
ferent nerve in the detrusor and (2) an afferent inhibition 
mechanism through urothelial β3-AR [217] (Fig. 3).

Effects on CNS
In a chemically induced DO mouse model using KCl, repetitive 
bladder insults induced an increase in NVCs and decreases in 
intercontraction intervals, bladder capacity and voiding effi-
ciency without changes in micturition pressure in CMG. mRNA 
expressions of β3-ARs, M2-, and M3 muscarinic receptors, and 
P2X purinergic receptors were upregulated in the urothelium of 
the bladder, which indicates hyperexcitability of bladder affer-
ents. In the L6 spinal cord, immunoreactivities of CX3C motif 
chemokine receptor 1 (CX3CR1), glial fibrillary acidic protein 
(GFAP), and C-C chemokine receptor type 2 (CCR2), which 
are implicated in the neuroinflammation (neuro-glial interac-
tions), were elevated. These results suggest that chronic noxious 
stimuli of bladder afferents may induce neural remodeling of 
CNS; in other words, central sensitization. Long-term continu-
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ous treatment of mirabegron reduced NVCs and improved 
bladder capacity and voiding efficiency. In addition, immunore-
activities of CX3CR1, GFAP, and CCR2 were significantly de-
creased by continuous administration of mirabegron compared 
to the sham or treatment cessation group, which indicates that 
continuous treatment may prevent central sensitization [9]. This 
central sensitization mechanism was probably possible because 
mirabegron acts on β3-ARs in the urothelium and preganglion-
ic cholinergic nerves, thereby continuously suppressing afferent 
signals and cholinergic efferent transmission, which could influ-
ence the CNS activation mechanisms.

There is still insufficient evidence of whether β3-ARs partici-
pate in neural remodeling by working directly on DRG or CNS. 
There were some studies on the existence of β3-ARs on DRG 
[182], and CNS [218, 219]. Although a detailed role has not 
been revealed yet, β3-ARs may be involved in controlling de-
pression in the frontal cortex and hippocampus [218-220], and 
interact with serotonin receptors such as 5-HT1A, 5-HT2A, 
and 5-HT3 [221, 222]. β3-ARs presented in the locus coeruleus 
are also associated with norepinephrine secretion [223]. There 
was a study showing a correlation of β3-ARs with neuroinflam-
mation mediated by ATP in DRG [224], but a recent study re-
vealed that only peripheral β3-ARs are involved in these mech-
anisms of neuroinflammation [225].

CONCLUSIONS

Several hypotheses have been suggested for the mechanisms in-
volved in OAB development, including those of neurogenic, 
myogenic, and urothelial origin; however, it is difficult to ex-
plain them using just one hypothesis as it seems that they are 
tangled and influence each other. Because the pathologic etiolo-
gies that cause OAB are diverse, the OAB phenotype is also as-
sumed to be multifactorial, although no phenotype standardiza-
tion exists. In fact, the available treatment regimens are still not 
sufficient. Each drug has different mechanisms of action, and 
the drug effects may work differently depending on the under-
lying pathologies, although the same drug is used. If continued 
clinical and basic research increases our understandings of the 
action mechanisms in OAB medications including β3-AR ago-
nists, better treatment approaches can be achieved to implement 
the pathogenesis-oriented therapy for OAB patients who do not 
respond to or have little effects by conventional treatments.
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