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INTRODUCTION

Neuroinflammation acts as a cause of various neurodegenera-
tive diseases and adversely affects cognitive function and neu-
roplasticity [1,2]. Single cerebrospinal injection of a bacterial 

endotoxin called lipopolysaccharide (LPS) in rodents leads to 
neuro-inflammatory animal model that causes cognitive dys-
function and learning deficits [3]. LPS is an endotoxin in the 
cell wall of gram-negative bacteria and has been used to evoke 
inflammation in the nervous system.
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Purpose: Exercise has been shown to protect against diverse brain diseases. Voluntary exercise improves cognition and has a 
neuroprotective effect. The aim of this investigation is to study the effect of voluntary wheel running on brain inflammation in 
rats with regard to inflammation and apoptosis.
Methods: Brain inflammation was caused by intracranial injection of lipopolysaccharide using a stereotaxic instrument. Vol-
untary wheel running group were conducted during 21 consecutive days, staring 2 days after brain inflammation.
Results: Brain inflammation increased proinflammatory cytokine production and apoptosis cell death in the hippocampus. 
There changes in the hippocampus deteriorated spatial learning memory. However, voluntary wheel running suppressed the 
secretion of inflammatory cytokines and apoptotic neuronal cell death via inactivation of nuclear factor kappa B (NF-κB)/NF-
κB inhibitor-α pathway. Voluntary wheel running also promoted the recovery of the spatial learning memory impairment.
Conclusions: Voluntary wheel running after brain inflammation enhanced spatial learning memory by suppressing proin-
flammatory cytokine secretion and apoptosis cell death. Voluntary wheel running is also expected to be effective in inflamma-
tory diseases of the urogenital system.
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• HIGHLIGHTS
- �Administration of LPS caused brain inflammation and showed spatial learning memory impairment. 
- Administration of LPS increased secretion of proinflammatory cytokines and apoptotic neuronal cell death.
- Voluntary wheel running suppresses inflammation and apoptosis, resulting in improvement of spatial learning memory in brain inflammation rats.
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LPS releases tumor necrosis factor-α (TNF-α) and interleu-
kin-6 (IL-6), which causes inflammation-mediated neuronal 
damage [4]. Moreover, neuroinflammation induced by LPS 
showed excessive apoptosis in the brain [5,6]. LPS enhances 
proinflammatory cytokine secretion by stimulating nuclear fac-
tor kappa B (NF-κB) [7,8]. NF-κB serves as a basis for apoptosis 
cell death in neuroinflammation [9,10]. Terminal deoxynucleo-
tidyl transferase-mediated dUTP nick end labeling (TUNEL) 
staining for finding of DNA fragmentation, caspase-3 expres-
sion acting as an executor of apoptosis, and imbalance of B-cell 
lymphoma 2 (Bcl-2)-associated X protein (Bax) versus Bcl-2 
are biological markers representing apoptosis [6,11]. LPS-in-
duced brain inflammation increased TUNEL-positive and cas-
pase-3-positive cell number, improved Bax expression, and at-
tenuated Bcl-2 expression, thereby enhancing the Bax versus 
Bcl-2 ratio in the motor cortex [6].

Exercise is known to reduce neurological impairment, pro-
mote learning ability and memory capability, and inhibit apop-
totic neuronal cell death [11]. Voluntary exercise improves cog-
nitive ability, promotes antiapoptotic action, and has neuropro-
tective effect [12]. Compared to the treadmill exercise, which is 
a forced exercise, voluntary wheel running is known to be safe 
from systemic stress and does not reduce the neuroprotective 
effect [12,13]. Therefore, in this study, we evaluated spatial learn-
ing memory following NF-κB activation in LPS-induced brain 
inflammation. We also observed the effect of voluntary wheel 
running on NF-κB expression, inflammation, apoptotic cell 
death, and spatial learning memory impairment.

MATERIALS AND METHODS 

Animals
For this experiment, 8-week-old male Sprague-Dawley rats 
(220±10 g, n=30) were bought from Orient Bio Co. (Seong-
nam, Korea). The animals were divides into three groups (n=10 
in each group): sham-operation group, brain inflammation-in-
duction group, and brain inflammation-induction and volun-
tary wheel running group. This experimental procedure received 
approval number from the Institutional Animal Care and Use 
Committee of Kyung Hee University (KHUASP[SE]-17-095).

Brain Inflammation
After anesthetizing by Zoletil 50 (10 mg/kg intraperitoneally; 
Virbac Laboratories, Carros, France), the rats were put on a ste-
reotaxic frame. As explained next [14], a 26-G needle from 

Hamilton syringe (Micro 701; Hamilton Co., Reno, NV, USA) 
was inserted into the cerebral ventricle through a hole drilled in 
the skull. LPS (055:B5; Sigma Aldrich, St Louis, MO, USA) 50 
μg was dissolved in 7-μL physiological saline and injected into 
the cerebral ventricle for at least 3 minutes. The rats in the sh-
am-operation group received same amount of physiological sa-
line in the same way, except for LPS.

Wheel Running Protocol
The rats in the voluntary wheel running group started exercis-
ing 2 days after causing brain inflammation and continued ex-
ercising for 3 weeks. As explained next [6], the rats in the vol-
untary wheel running group were separated and placed alone 
in the cages with running wheels (20 in diameter ×9 cm in 
width). The number of wheel revolution was recorded by an 
electronic sensor attached to the running wheel, and the mile-
age was calculated (Fig. 1). The wheels were only allowed to 
move for 12 hours (08:00 AM to 20:00 PM) to prevent the exces-
sive running of the experimental animals.

Radial 8-Arm Maze Test
Spatial learning memory was measured by a radial 8-arm maze 
test, as explained next [15], and the device for a radial 8-arm 
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Fig. 1. Experimental schedule (upper panel) and daily wheel 
running distance (lower panel). BI, brain inflammation.



S98    www.einj.org

Ko and Ko  •  Wheel Running Inhibits Inflammation and ApoptosisINJ

Int Neurourol J November 30, 2020

maze has a central diameter of 30 cm, a length of 50 cm, and a 
width of 10 cm. A small container (3-cm diameter ×1-cm 
depth) filled with 100 μL of water was put at the end of the arm 
to attract the animals to each arm. The rats were not watered 
for 24 hours thereafter, and the rats lacking water were allowed 
to find water in the maze. At the 23 days after brain surgery to 
induce brain inflammation, the test was performed. The evalu-
ation was analyzed by the time spent finding water in all 8-arm 
mazes and the error of re-entering the visited arm. Further-
more, the correct number of choices was calculated before the 
first error. The test ended after 8 minutes had elapsed.

Tissue Preparation
After anesthesia by Zoletil 50 (10 mg/kg; Vibac Laboratories, 
Carros, France), the rats were infused with 50mM phosphate-
buffered saline through heart and were treated by 4% parafor-
maldehyde for fixation. After removing the brains, 40-μm-thick 
coronal sections were prepared with a frozen microtome (Leica, 
Nussloch, Germany).

Proinflammatory Cytokines
Enzyme-linked immunoassay was done to detect the concen-
trations of TNF-α and IL-6 in the hippocampus. The procedure 
was performed using an enzyme immunoassay kit (Abcam, 
Cambridge, UK) following the manufacturer’s protocol.

Western Blotting
Western blot was done as explained next [16,17]. The hippo-
campal tissue was homogenized on chilled lysis buffer (Cell 
Signaling Technology, Inc., Danvers, MA, USA) with 1 mM 
phenylmethylsulfonyl fluoride (Sigma Aldrich), and then cen-
trifuged at 14,000 rpm for 30 minutes at 4°C. For the primary 
antibodies, anti-rabbit antibody for NF-κB-α (1:1,000; Abcam), 
NF-κB inhibitor-α (IκB-α) (1:1,000; Santa Cruz Biotechnology, 
CA, USA), anti-mouse antibody for Bax, Bcl-2, and β-actin 
(1:1,000; Santa Cruz Biotechnology) were included. Horserad-
ish peroxidase-conjugated anti-rabbit antibody for NF-κB-α, 
IκB-α, and horseradish peroxidase-conjugated anti-mouse anti-
body for Bax, Bcl-2, and β-actin were included as the secondary 
antibodies. To compare the relative protein expression, the 
bands were calculated densitometrically by Image-Pro plus 
computer-assisted image analysis system (Media Cyberbetics 
Inc., Silver Spring, MD, USA).

TUNEL Assay
TUNEL assay was done following to the manufacturer’s proto-
col using In Situ Cell Death Detection Kit (Roche, Mannheim, 
Germany) as explained next [17]. TUNEL-positive cells were 
visualized by treating with 0.05% 3,3-diaminobenzidine with 
0.01% H2O2 in 50 mM Tris-buffer (pH, 7.6) for 10 minutes. For 
the counter-staining, Nissls (DAKO, Glostrup, Denmark) was 
used.

Cleaved Caspase-3 Immunohistochemistry
Immunohistochemistry for cleaved caspase-3 was done as ex-
plained next [6,17]. The sections were treated with rabbit anti-
cleaved caspase-3 antibody (1:500; Cell Signaling Technology, 
Inc.) during overnight, and then incubated with biotinylated 
rabbit secondary antibody (1:200; Vector Laboratories) for an-
other 1 hour. After amplification of the secondary antibody 
with the Vector Elite ABC kit (1:100; Vector Laboratories), 
0.03% diaminobenzidine was used to visualized the antibody-
biotin-avidin-peroxidase complex.

Statistical Analysis
The number of TUNEL-positive and cleaved caspase-3-positive 
cells was presented as the number of cells per mm2 in the hip-
pocampal dentate gyrus. The data were analyzed with 1-way 
analysis of variance with Duncan post hoc test using IBM SPSS 
Statistics ver. 23.0 (IBM Co., Armonk, NY, USA).

RESULTS

Spatial Learning Memory
The results of the spatial learning memory are presented in Fig. 2. 
Intracranial ventricular injection of LPS showed longer completed 
time, more error number, and less correct number (P<0.05). In 
contrast, voluntary wheel running showed shortened completed 
time, reduced error number, more correct number in the rats with 
brain inflammation-induction (P<0.05).

Proinflammatory Cytokines
The results of the expression levels of TNF-α and IL-6 in the 
hippocampus are presented in Fig. 3. Intracranial ventricular 
injection of LPS enhanced TNF-α and IL-6 expressions (P< 
0.05). In contrast, voluntary wheel running inhibited the ex-
pression of TNF-α and IL-6 in the rats with brain inflamma-
tion-induction (P<0.05).
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NF-κB and IκB-α
The results of the Western blotting determining NF-κB activa-
tion and IκB-α phosphorylation in the hippocampus are pre-
sented in Fig. 4. Intracranial ventricular injection of LPS in-
creased IκB-α phosphorylation and NF-κB expression (P < 
0.05). In contrast, voluntary wheel running decreased IκB-α 
phosphorylation as well as NF-κB in expression in the rats with 
brain inflammation-induction (P<0.05).

Apoptotic Neuronal Cell Death
The results of TUNEL staining and cleaved caspase-3 expres-
sion in the hippocampal dentate gyrus are presented in Fig. 5A. 
Bax and Bcl-2 expression in the hippocampus are presented in 
Fig. 5B. Intracranial ventricular injection of LPS increased the 
number of TUENL-positive and cleaved caspase-3 cells and ra-
tio of Bax/Bcl-2 (P<0.05). In contrast, voluntary wheel running 

suppressed the number of TUENL-positive and cleaved cas-
pase-3-positive cells and the ratio of Bax/Bcl-2 in the rats with 
brain inflammation-induction.

DISCUSSION

Inflammation and apoptosis serve as the underlying mecha-
nisms of brain inflammation, leading to cognitive impairment 
and memory deficits [2,3,14]. In the current study, brain in-
flammation worsened spatial learning memory. However, vol-
untary wheel running spatial learning memory impairment 
caused by brain inflammation.

NF-κB regulates immunity and inflammation in diseases 
such as neuroinflammation [18]. NF-κB is activated by IκB-α 
degradation by signaling-induction, and activation of NF-κB 
pathway regulates the transcription of inflammatory genes, in-
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Fig. 2. Performance time, correct number, error number in the radial 8-arm maze test. (A) Time to complete performance. (B) Correct 
score. (C) Error score. Sham, sham-operation group; BI, brain inflammation-induction group; BI-Wheel, brain inflammation-induc-
tion and voluntary wheel running group. *P<0.05 when compared to the sham-operation group. #P<0.05 when compared to the brain 
inflammation-induction group.

Fig. 3. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the hippocampus. (A) Expression of TNF-α. (B) Ex-
pression of IL-6. Sham, sham-operation group; BI, brain inflammation-induction group; BI-Wheel, brain inflammation-induction and 
voluntary wheel running group. *P<0.05 when compared to the sham-operation group. #P<0.05 when compared to the brain inflam-
mation-induction group.
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cluding proinflammatory cytokine expression in brain inflam-
mation [10]. In the current study, neuroinflammation caused 
by LPS enhanced IκB-α phosphorylation, resulting in NF-κB 
activation. Enhancement of NF-κB eventually led to increased 
expression of TNF-α and IL-6 in hippocampus. The current re-
sults indicated that overexpression of proinflammatory cyto-
kine aggravated the progression of brain inflammation.

Physical exercise to maintain and improve nerve health can 
be a very effective treatment strategy for preventing neuroin-
flammation-related diseases [19]. Lymphocytes increase during 
and after exercise, and exercise regulates the balance of secre-
tion of proinflammatory and anti-inflammatory cytokines 
[20,21]. It is well known that physical exercise inhibits the acti-
vation of NF-κB signal caused by inflammation [22,23]. In par-
ticular, voluntary wheel exercise in rodents induces changes in 
several signaling molecules by inhibiting the stress-related be-
havior compared to forced exercise [24,25]. In the current 
study, voluntary wheel running reduced IκB-α phosphoryla-
tion, resulting in NF-κB inactivation. Inactivation of NF-κB 
suppresses the production of proinflammatory cytokines such 
as TNF-α and IL-6 in the hippocampus.

LPS-induced inflammatory response can trigger signaling 
pathways of apoptosis in the brain [2,26,27]. After brain inflam-
mation, the imbalance of Bcl-2 and Bax increases the release of 

mitochondrial intermembrane proteins, including cytochrome 
c, which activates caspase-3 and DNA fragmentation [12,28]. 
In particular, stimulation of the NF-κB pathway by cellular 
stress promotes apoptosis-induced cell death [29]. Moreover, 
several proinflammatory cytokines can directly induce apop-
totic cell death through specialized signaling pathways [26]. In 
the current study, intracranial ventricular injection of LPS en-
hanced the number of TUNEL-positive cells, the expression of 
cleaved caspase-3, and the ratio of Bax/Bcl-2, demonstration 
that brain inflammation aggravated the apoptotic process.

Many methods have been implemented to treat neuroinflam-
mation, among which physical exercise is recommended as a 
treatment for brain inflammation [14,19,30]. In particular, vol-
untary exercise down-regulates the expression of glutamate re-
ceptors associated with excitotoxicity [31]. In the current study, 
voluntary wheel running suppressed the brain inflammation-
induced increased DNA fragmentation and cleaved caspase-3 
expression in the hippocampal dentate gyrus. Voluntary wheel 
running reduced Bax expression and increased Bcl-2 expres-
sion in the hippocampus. Voluntary wheel running also inhib-
ited the expression of NF-κB and proinflammatory cytokines 
through inhibiting IκB-α phosphorylation.

Here in the current study, we found that voluntary wheel 
running after brain inflammation enhanced spatial learning 
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Fig. 4. Expression of nuclear factor-κB (NF-κB) and NF-κB inhibitor-α (IκB-α) in the hippocampus. Actin was used as an internal con-
trol (46 kDa). (A) Expression of NF-κB. Upper panel: representative expression of NF-κB. Lower panel: relative expression of NF-κB. 
(B) Expression of IκB-α. Upper panel: representative expression of IκB-α. Lower panel: relative expression of  IκB-α. Sham, sham-oper-
ation group; BI, brain inflammation-induction group; BI-Wheel, brain inflammation-induction and voluntary wheel running group. 
*P<0.05 when compared to the sham-operation group. #P<0.05 when compared to the brain inflammation-induction group.
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memory by inhibiting the secretion of proinflammatory cyto-
kines and cell death by apoptosis in the hippocampus. Volun-
tary wheel running was shown to be effective by reducing brain 
inflammation-induced activation of NF-κB/IκB-α pathway. 
Voluntary wheel running is also expected to be effective in in-

flammatory diseases of the urogenital system.
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